L2-estimates for the evolving surface finite element method
نویسندگان
چکیده
In this paper we consider the evolving surface finite element method for the advection and diffusion of a conserved scalar quantity on a moving surface. In an earlier paper using a suitable variational formulation in time dependent Sobolev space we proposed and analysed a finite element method using surface finite elements on evolving triangulated surfaces. An optimal order H1-error bound was proved for linear finite elements. In this work we prove the optimal error bound in L2(Γ(t)) uniformly in time.
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملQuasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities
Quasi-optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) are derived for the finite element approximation of Allen-Cahn equations. The estimates depend on the inverse of a small parameter only in a low order polynomial and are valid past topological changes of the evolving interface. The error analysis employs an elliptic reconstruction of the approximate solution and applies to a large cl...
متن کاملHigher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces
We define higher-order analogs to the piecewise linear surface finite element method studied in [Dz88] and prove error estimates in both pointwise and L2-based norms. Using the Laplace-Beltrami problem on an implicitly defined surface Γ as a model PDE, we define Lagrange finite element methods of arbitrary degree on polynomial approximations to Γ which likewise are of arbitrary degree. Then we ...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملResidual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 82 شماره
صفحات -
تاریخ انتشار 2013